From The Weston A. Price Foundation:
What is going on? Is the coronavirus an infectious disease as we’ve been told? Is there a different way to understand viruses and our current health crisis? Dr. Tom Cowan challenges our paradigm of both in today’s podcast episode. He discusses Koch’s postulates: the standard by which scientists and doctors have long determined infectious diseases. And he explains why it’s problematic that this standard has not been applied on the coronavirus. He sheds light on the issues with testing using the RTPCR test. And he reveals a very different theory on how viruses spread, considering them messengers of sorts, that respond to poisons that jeopardize our health. He also addresses the part that our environment plays in wellness. He discusses air pollution and non-native electromagnetic frequencies—particularly 5G. He also goes back in time, pointing out how certain conditions that were factors at the time of the 1918 flu pandemic and polio, for example, are also at play today. Tom goes over all of the science in a logical, step-by-step fashion to help us get a grasp on how we got to where we are today. Highlights from the conversation include:
References
Engelbrecht, T., & Köhnlein, C. (2007). Virus mania. Trafford.
Kremer, H. (2008). The silent revolution in cancer and AIDS medicine. Berlin, Germany: H. Kremer. Firstenberg, A. (2020). Invisible Rainbow. Chelsea Green Publishing. Cowan, T. (2019). Cancer and the New Biology of Water. London, UK: Chelsea Green Publishing. Nuday, C. (2014). Water Codes: The Science of Health, Consciousness, and Enlightenment (1st ed.). Water Ink Publishing. Crowe, D. (2020). The Infectious Myth: A Book Project by David Crowe. Retrieved 21 May 2020, from https://theinfectiousmyth.com Virgin, S. (2014). The mammalian virome in genetic analysis of health and disease pathogenesis [Video]. Retrieved from https://www.youtube.com/watch?v=TRVxTBuvChU Dossey, L. (2010). Larry Dossey, MD: The Art of Healing (excerpt) - A Thinking Allowed DVD w/ Dr. Jeffrey Mishlove [Video]. Retrieved from https://www.youtube.com/watch?v=ECA1PNJOQR0 PS22 Chorus "HALLELUJAH" Leonard Cohen. (2015). [Video]. Retrieved from https://www.youtube.com/watch?v=aCLI7ewjvBo
0 Comments
Dr. Paul Connett of the Fluoride Action Network (fluoridealert.org) talks with James Corbett about Food & Water Watch Inc., et al. v. United States Environmental Protection Agency, a lawsuit that could bring an end to the practice of water fluoridation in the United States. Discussed in the video above is the Toxic Substances Control Act under which the suit is being filed, how recent court rulings have allowed the case to proceed, and the incredible significance of the chance to depose the EPA's "experts" under oath.
With the advent of poor water conditions plaguing the world, several groups of researchers have entered a quest to secure clean sources of water. A seemingly infinite amount of water exists in the ocean, however purifying salt water is whole separate issue to tackle. Among the technologies available to purify water, the design and development of relatively-new graphene membrane systems suggests a promising future. Graphenes are a class of mechanically robust, ultrathin, high-flux, high selectivity, and fouling resistant separation membranes that are able to advance water desalination technologies. These next-generation membranes are a cost effective and sustainable alternative for water purification applications. Graphene membranes have been observed offer ultrafast permeation, excellent mechanical strength and precise ionic sieving (Mahmoud, Mansoor, Mansour, & Khraisheh, 2015). Researchers have observed the properties of a silica-crosslinked graphene oxide (GO) membrane, and highlighted it's unique capability to remove neutral organic molecules from water, such as glucose and sucrose. The silica-crosslinked GO membrane was created by immersing a layer-stacked GO film in a solution of saturated silica, which remained stable under various test conditions. The negatively charged GO membrane was found to remove the neutral organic molecules 84% to 90% more efficiently than the a negatively charged ionic species, trisodium citrate (22%), a saline-possessing chemical. This suggests that the interactions between the GO membrane and the tested neutral organic species indicates the GO membrane may better remove charged molecules compared to nanofiltration or reverse osmosis membranes (Zheng & Mi, 2016). GO membranes have been observed to carry exceptional molecular permeation properties, with promise for many applications. However, their use in filtering ions and removing salt is limited, since the the diameters of the sieve is larger than that of the ions in salts. Achieving a smaller diameter for the GO membrane immersed in water has proved to be a challenge. Researchers have described and demonstrated how to control the diameter of such membranes. However, permeation rates decrease exponentially with decreasing sieve size but the transportation of water is weakly affected (by a factor of <2). Based on these findings, the researchers were able to demonstrate that the graphene-based membranes exhibit a 97% rejection for NaCl (Abraham et al., 2017). ReferencesAbraham, J., Vasu, K., Williams, C., Gopinadhan, K., Su, Y., & Cherian, C. et al. (2017). Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology. http://dx.doi.org/10.1038/nnano.2017.21
Mahmoud, K. , Mansoor, B. , Mansour, A. , & Khraisheh, M. (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination, 356, 208-225. Zheng, S. , & Mi, B. (2016). Emerging investigators series: Silica-crosslinked graphene oxide membrane and its unique capability in removing neutral organic molecules from water. Environmental Science: Water Research & Technology, 2(4), 717-725. |
This feed contains research, news, information, observations, and ideas at the level of the world.
Archives
May 2024
Categories
All
|